Допустимые размеры дефектов труб, подлежащих ремонту сваркой. Дефекты основного металла и сварных соединений Вопросы для самоконтроля

Способы кап. ремонта по восстановлению стенки МТП.

Дефекты стенки МТП.

ТЕХНОЛОГИЯ ЗАМЕНЫ ПОВРЕЖДЕННОГО УЧАСТКА НЕФТЕПРОВОДА

Виды ремонтных работ на линейной части МТП.

Ремонт поврежденного участка тр-да путем его заме­ны производят при обнаружении (наличии):

трещины длиной 50 мм и более в сварном шве или основ­ном металле трубы;

разрыва кольцевого (монтажного) шва;

разрыва продольного (заводского) шва и металла трубы;

вмятины глубиной, превышающей 3,5%диаметра трубы;

царапины глубиной более 30% толщины стенки и длиной 50 мм и более.

В зависимости от принятой технологии ведения работ за­мена участка трубы может осуществляться: с остановкой пе­рекачки нефти по трубопроводу на весь период восстанови­тельных работ, при этом аварийный участок может полно­стью или частично освобождаться от нефти; с прокладкой обводной (байпасной) линии, требующей остановки перекачки лишь на период ее монтажа и подсоеди­нения.

После остановки перекачки обнаруженный аварийный участок перекрывают от остальной трассы двумя линейными задвижками. При авари­ях на нефтепроводах с системой телемеханизации происходит автоматическое отключение насосных агрегатов и лока­лизация поврежденного участка линейными задвижками.

См. вопр.22

Дефекты стенки трубы - это дефекты, не приводящие к изменению проходного сечения трубы. Они делятся на следующие группы:

потеря металла (коррозия, эрозия, вмятина в прокате, забоина, задир, рванина) - изменение номинальной толщины стенки трубы, характеризующееся локальным утонением в результате механического или коррозионного повреждения или обус­ловленное технологией изготовления;

риска (царапина) - потеря металла стенки трубы, происшедшая в результате взаимодействия стенки трубы с переме­щающимся по ней твердым телом;

расслоение - несплошность металла стенки трубы; обычно является раскатанным скоплением неметаллических включений;

изменение толщины стенки - плавное утонение стенки трубы, образовавшееся в процессе изготовления трубы или листового проката;

трещина - разрыв основного металла стенки трубы, характеризующейся малым поперечным размером;

дефект св. шва (непровар, пора, шлаковое включение, подрез, трещина сварного шва) - дефект в самом св. шве или ОШЗ, возникший вследствие нарушения технологии сварки.

По степени влияния на несущую способность нефтепрово­да дефекты классифицируются на опасные и неопасные.

К опасным дефектам относятся:

дефекты геометрии, примыкающие к сварным швам или непосредственно на швах, если их измеренная глубина пре­вышает по величине 3% от номинального наружного диамет­ра трубы;


дефекты, опасные по результатам расчета на статическую прочность (расчетное давление разрушения дефектной трубы ниже заводского испытательного давления);

дефекты стенки, связанные с потерей металла, с остаточ­ной толщиной стенки трубы на уровне технически возмож­ного минимального предела измерения снаряда-дефектоскопа.

Опасные дефекты подлежат выборочному ремонту в соответствии с установленными методами ремонта опасных дефектов.

К неопасным относятся дефекты, для которых расчетное давление разрушения дефектной трубы не ниже заводского испытательного давления. Эксплуатация НП при наличии неопасных дефектов допускается без ограничений на режимы перекачки в межинспекционный период.

По критерию необходимости проведения дополнительного дефектоскопического контроля (ДДК) дефекты подразделяют­ся на требующие ДДК и не требующие ДДК.

Ряд дефектов труб и сварных швов ремонтируют без вырез­ки дефектного участка. Коррозионные язвы могут завари­ваться при ремонте нефтепроводов под давлением перекачи­ваемой нефти до 3,5 МПа.

Повреждения стенки трубопровода глубиной до 5% от толщины трубы (царапины, язвы, задиры, забоины) ликвиди­руют шлифованием. При этом толщина стенки не должна быть выведена за пределы минусового допуска труб.

Коррозионные повреждения глубиной более 5% от тол­щины стенки труб могут быть отремонтированы в соответ­ствии с "Инструкцией по безопасному ведению сварочных работ при ремонте нефте- и продуктопроводов под давлени­ем". При наличии сплошной коррозии ремонт нефтепровода производят путем приварки накладных усилительных элемен­тов (заплат, муфт).

Технология заварки коррозионных повреждений состоит из двух этапов: подготовительной работы (зачистка поверх­ности) и непосредственно заварки. Место заварки зачищают до металлического блеска в радиусе не менее двух диаметров повреждений (наибольших линейных размеров). Зачистку поверхности можно проводить вручную с использованием пес­коструйных аппаратов. Возможно применение других мето­дов очистки (например, химического) для полного удаления продуктов коррозии.

В случае обнаружения вмятин глубиной до 3,5% от диа­метра тр-да разрешается выправлять их с помощью безударных устройств.

Повреждения тр-да в виде свищей и трещин дли­ной до 50 мм ремонтируют без опорожнения от перекачи­ваемого продукта приваркой накладных элементов заплат, хомутов, муфт.

Размеры накладных элементов и муфт должны перекры­вать место дефекта не менее чем на 40 мм от его краев. За­плата должна иметь эллипсовидную форму. Длина муфты без технологических колец должна быть в пределах 150-300 мм. При длине муфты более 300 мм должны быть использованы технологические кольца.


23. Кап. ремонт дефектов с вырезкой «катушки».

Данная схема может быть использована при выборочном ремонте участков нефтепровода, имеющих опасные дефекты, т.е. нарушение геометрии стенок труб (вмятины, гофры) выше допустимых пределов.

Ремонт производится с вырезкой дефектного места ТП и заменой на новый с остановкой перекачки. Длина вырезаемого дефектного участка должна быть больше самого дефекта не менее чем на 100 мм с каждой стороны. Мини­мально допустимая длина "катушки" - не менее диаметра ре­монтируемого нефтепровода.

Работа начинается с подготовки рабочей документации по данным внутритрубной дефектоскопии.

Ремонт дефектного участка на месте начинается с вскры­тия дефектного участка и подготовительных работ по откач­ке нефти.

Вскрытие дефектного участка и разработка котлована для производства демонтажно-монтажных работ осуществляются одноковшовым экскаватором. Подкоп под нефтепроводом можно выполнить одновременно при вскрытии экскаватором с поворотным ковшом или вручную.

Очистка вскрытого участка нефтепровода от старого изо­ляционного покрытия выполняется очистным устройством или вручную, после чего проводится тщательный осмотр ТП на отсутствие выхода продукта.

Промерив расстояние между обработанными концами нефтепровода, подготавливают "катушку" из заранее опрессованной трубы или трубу в целом.

При наличии приспособления для разметки трубы возмож­на первоначальная подготовка "катушки" заданной длины, по габаритам которой производятся разметка и подготовка кон­цов нефтепровода.

"Катушку" к ТП пристыковывают трубоуклад­чиком или автокраном, собирают стык с применением на­ружных центраторов и фиксируют стыкуемые концы при помощи прихваток равномерно по периметру.

Требования к квалификации сварщиков, сборке, сварке и контролю качества сварных соединений нефтепроводов оста­ются такими же, как и при строительстве новых нефтепро­водов.

Контроль качества сварных швов - визу­альный и радиографический независимо от категории участ­ков ТП. При удовлетворительном качестве сварно­го шва технологические отверстия заглушаются металличес­кими пробками и обвариваются после заполнения трубопро­вода нефтью до выхода на рабочий режим.

Если при опорожнении трубопровода нефть откачивалась в земляной амбар или резинотканевые резервуары, то необ­ходимо закачать ее в ремонтируемый нефтепровод до возоб­новления перекачки по нему воды и демонтировать схему об­вязки нефтепровода с закачивающим насосным агрегатом.

Следующей значительной и сложной технологической опе­рацией является удаление воздуха из нефтепровода.

Очистку и нанесение изоляционного покрытия на нефте­провод ремонтируемого участка выполняют соответствующи­ми очистными и изоляционными устройствами или вручную. Это зависит от протяженности участка, диаметра труб и типа изоляционного покрытия.

Работы заканчиваются рекультивацией плодородного слоя почвы, планировкой и очисткой близлежащей территории, восстановлением трассовых сооружений, знаков и т.д., если они были нарушены в процессе производства работ.

Все виды дефектов, возникающих в процессе производства труб, можно, в первом приближении, разделить на три типа по причинам их происхождения:

— механические повреждения наружной или внутренней поверхности трубы в результате несоответствия инструмента требованиям технологии (чрезмерный износ или разрушение, налипание металла, неправильно выполнена калибровка), попаданием окалины и других твердых инородных материалов на пограничные поверхности инструмента и трубы. К таким дефектам относятся царапины, риски, вмятины, подрезы, отпечатки и др.

— деформационные повреждения, связанные с нарушением технологии деформирования трубы, в том числе с повышенным уширением металла, увеличением коэффициентов деформации, нарушением синхронности работы, последовательно расположенных клетей установки («ус», «закат», «ужим», «гармошка»).

— нарушения сплошности металла, связанные со сложным напряженно-деформированным состоянием, определяемым схемой деформации труб, наличием растягивающих напряжений, превышающих допустимые («скворечник» при продольной прокатке и прессовании, осевое или кольцевое разрушение при косой прокатке, плены на внутренней поверхности, выявляемые при калибровке и редуцировании и др.). Следует отметить, что последний вид дефектов в основном определяется марочным составом и качеством металла трубной заготовки, и основные агрегаты, производящие деформацию труб, являются своеобразным «дефектоскопом» качества исходного металла. Так, например, основным агрегатом практически любой трубопрокатной установки является прошивной косовалковый стан, который характеризуется сложной схемой напряженного состояния металла в очаге деформации, приводящей к высоким растягивающим напряжениям в осевой (для двухвалкового) или кольцевой (для трехвалкового) зонах прокатываемой заготовки. Специальные технологические приемы позволяют снизить возможность вскрытия осевых загрязнений металла в виде плен на внутренней поверхности, однако решающим в этом случае является качество трубной заготовки. Дефекты в виде плен сталеплавильного происхождения на внутренней поверхности труб, раскатанные при втором этапе деформации и не видимые в силу плотного прилегания, после раскатных станов вскрываются (отстают от поверхности) при калибровании и особенно при редуцировании труб, что объясняется условиями деформации металла у внутренней поверхности трубы при ведении процесса без оправки.

Проведенные на заводах исследования показали, что при нагреве слитков под прокатку в заготовку или трубы верхний слой металла толщиной до 4-5 мм выгорает в окалину; при нагреве катаной трубной заготовки выгорает верхний слой толщиной 0.8-1.1 мм.

Следовательно, дефекты, залегающие в поверхностных слоях слитков и трубной заготовки, соответственно уменьшаются по глубине, более мелкие из них выгорают в окалину. К таким дефектам относятся, например, газовые пузыри. На поверхности заготовки (литой и катаной) наблюдается значительно большее их количество, чем остается на поверхности труб в виде волосовидных плен. Почти полностью выгорают в слой окалины морщины на трубной заготовке. Но, вместе с тем, дефекты, залегающие более глубоко, приближаются к поверхности заготовки и легче вскрываются при прокатке, образуя плены на трубах. К таким дефектам относятся, например, подкорковые газовые пузыри и скопления экзогенных неметаллических включений.

Классификация дефектов труб. Все дефекты труб МГ можно разделить на следующие классы:


1. Отклонение оси трубы от проектного положения. 2. Нарушение формы поперечных сечений труб. 3. Дефекты стенки трубы и сварных соединений. К первому классу относятся: - всплывшие участки трубопровода; - арочные выбросы и выпучины; - провисы, просадки.
К всплывшим участкам относятся участки магистрального газопровода, потерявшие проектное положение оси в обводненном грунте с выходом на поверхность воды. Анализ и оценку несущей способности таких участков можно оценивать, используя рекомендации.
К арочным выбросам относятся участки магистрального газопровода, потерявшие в процессе эксплуатации проектное положение оси с выходом на дневную поверхность. По форме арочные выбросы подразделяются на симметричные и несимметричные (в виде одной полуволны синусоиды), на косогоре (со смещением оси в вертикальной плоскости) и типа «змейки» в горизонтальной плоскости (с двумя и более полуволнами). К выпучинам относятся участки трубы, выпучившиеся в результате морозного пучения грунтов, обычно при промерзании талых грунтов, вмещающих трубопровод.
Для анализа и оценки работоспособности таких участков необходимо использовать инструкции.
К провисам относятся оголенные участки трубы без опирания на грунт, возникающие, к примеру, в результате карстовых явлений или оттаивания вечномерзлых грунтов.
К просадкам относятся участки трубы на глинистых и лесовых грунтах, ось которых при повышении влажности выше определенного значения опускается ниже проектного уровня, или участки труб, проседающие при оттаивании вечномерзлых грунтов. Ко второму классу относятся: - овальность трубы; - вмятины; - гофры.
Овальность сечения - дефект геометрической формы сечения трубы (трубопровода), возникающий в результате превращения начального кольцевого сечения трубы в эллиптическое. Овальность сечений образуется при действии значительных внешних поперечных (радиальных) нагрузок на трубу (трубопровод). Овальность сечения определяется как отношение разности между максимальным Д и минимальным Д диаметрами в одном и том же сечении к номинальному диаметру. Оценка работоспособности такого участка определяется согласно Рекомендациям. Вмятина - местное изменение формы поверхности трубы, не сопровождающееся утонением стенки. Вмятина образуется в результате взаимодействия трубы с твердым телом, не имеющим острых кромок. Это взаимодействие может быть как статическим, так и динамическим.


Вмятина имеет, как правило, плавное сопряжение с остальной поверхностью трубы и поэтому не вызывает пиковой концентрации напряжений. В области вмятины имеются значительные остаточные изгибные (по толщине стенки трубы) пластические деформации. Эти деформации возникают как в поперечных, так и в продольных сечениях вмятины, но обычно максимальные их значения имеют место в поперечном (кольцевом) направлении.
Вмятина характеризуется поверхностными величиными (вдоль трубы и в кольцевом направлении) и глубиной.
При обследовании МГ рекомендуется обращать внимание на возможность наличия вмятины в зоне нижней образующей газопровода. Зона нижней образующей (5–6–7 часов) является наиболее подверженной образованию вмятин как в процессе сооружения, так и эксплуатации.


Гофр - поперечная складка на поверхности трубы. Характеризуется глубиной, которую обычно соизмеряют с толщиной стенки трубы.
Гофры обычно образуются при изоляционно-укладочных работах или при холодном изгибе труб. В редких случаях гофры могут образовываться в процессе эксплуатации МГ на углах поворота трассы при значительных перемещениях криволинейного участка МГ вследствие действия внутреннего давления и температуры и при прохождении трубопровода в слабонесущих грунтах.
К третьему классу относятся дефекты стенок труб металлургического происхождения и образовавшиеся при транспортировке, сооружении и эксплуатации МГ. Дефекты стенок труб металлургического происхождения: - расколы; - расслоения; - закаты; - плены; - рванины; - ликвация; - риски.
Трещины - узкий разрыв металла, направленный к поверхности стенки трубы под углом, близким к 90°. Могут быть сквозными и несквозными.
Расслоение - несплошность металла, ориентированная параллельно поверхности стенки трубы.
Закат - несплошность металла в направлении прокатки листа на значительной длине.
Плена - отслоение металла различной толщины и величины, вытянутое в направлении прокатки и соединенное с основным металлом одной стороной.
Рванина - раскрытый глубокий окисленный разрыв поверхности металла разнообразного очертания, расположенный поверх или под углом к направлению прокатки.
Ликвация - повышенное содержание неметаллических включений. Риска - продольная канавка, образовавшаяся в результате взаимодействия трубы с острыми выступами при прокатке (изготовлении) труб.
Дефекты стенок труб, образовавшиеся при транспортировке труб, сооружении и эксплуатации МГ: - утонения стенки трубы на значительной площади; - локальные повреждения стенки трубы как единичные, так и групповые; - линейно-протяженные дефекты. Утонение стенки трубы на значительной площади обычно вызывается сплошной (равномерной или неравномерной) коррозией трубопровода. Критерием именно такого повреждения является то, что максимальные напряжения в ослабленной зоне не зависят от поверхностных размеров дефекта, а определяются только в зависимости от минимальной толщины стенки в зоне утонения.
В дефектах типа утонений практически отсутствуют пиковые концентрации напряжений.
Локальное повреждение стенки трубы - это дефект стенки с присущими величиными, сопоставимыми с ее толщиной (но не более 5 толщин). К этим повреждениям относится питтинговая коррозия, каверны различного происхождения, забоины.
Линейно-протяженные дефекты - относительно длинные поверхностные повреждения стенок труб, у которых один размер -длина во много раз превышает два других - ширину и глубину. К линейно-протяженным дефектам относятся: - царапины; - задиры.
Царапины - дефект, поперечное сечение того имеет треугольную или трапецевидную форму малой ширины.
Задир - отличается от царапины несколько большей шириной и зазубренными краями.
Происхождение этих дефектов имеет механический характер. Прочность газопровода с подобными дефектами определяется степенью концентрации напряжений в сечении дефекта. Линейно-протяженные дефекты дополнительно характеризуются углом между направлением дефекта и образующей трубопровода. Чем этот угол меньше, тем опаснее дефект. Указанная классификация является качественной, а количественные оценки и расчеты опасности дефектов представлены в специально разработанных методиках по классам дефектов.

Согласно Руководству но техническому надзору за судами, нахо­дящимися в эксплуатации, Регистр СССР предусматривает освидетель­ствование судовых паровых котлов, г.е. осмотры, замеры, проверки, испытания с целью контроля соответствия котлов требованиям правил и определения технического состояния. При техническом надзоре за судовыми паровыми котлами со стороны Регистра СССР осуществляют следующие виды осеидетельсгионэний: внутреннее, гидравлическое испы­тание, наружный осмотр и проверка в действии.

Сроки, объем и характер таких освидетельствований регламенти­рованы Регистром СССР- Так, внутренние освидетельствования котлов производят ежегодно. Однако для новых котлов первое внутреннее осви­детельствование установлено через 4 года, второе - через й лет.

Гидравлические испытания необходимо проводить не реже одного раза в каждые 8 лет; наружные осмотры - не реже чем через год.

Для внутреннего освидетельствования необходимо подготовить кот­лы: охладить, онорожнить от воды, очистить от золы, накипи, сажи, окалины, шлака поверхности нагрева; при необходимости удалить клад­ку и изоляцию; обеспечить доступ к котельным фундаментам и др.

До начала освидетельствования необходимо отсоединить осматривае­мый котел от действующих, арматуру плотно закрыть, приводы засто­порить. Гидравлнческие испытания проводят после устранения дефек­тов, обнаруженных при внутреннем освидетельствовании. Изоляцию в местах швов коллектора удаляют, а также выполняют другие подгото­вительные работы, включающие подготовку к внутреннему освидетель­ствованию.

Пробное давление при гидравлическом испытании котлов принимают не менее 1,25/?|>„й,но не менее 0,2 МПа. После ремонта котлов пробное давление принимают не менее 1,5р ра б. При гидравлическом испытании котел должен быть полностью заполнен водой, температура воды и ок­ружающего воздуха должна быть не ниже 5°С. Разность температур между водой и наружным воздухом должна исключить отпотевание, подкачка воды во время выдержки при пробном давлении не разрешается.

В процессе гидравлического испытания давление поднимают до ра­бочего, затем следует предварительный осмотр при рабочем давлении, подъем давлении до пробного, осмотр при пробном давлении с отклю­чением насосов Котел считается выдержавшим гидравлическое испы­тание, если не обнаружены: течь, остаточные деформации, разрывы швов, видимое изменение формы, признаки нарушения целостности частей и соединений. Во время выдержки под пробным давлением не должно быть падения давления. Отпотевание н появление воды у заклепочных шоов и заклепок в виде отдельных не стекающих капель не считается течью. Это же явление-у сварных швоа недопустимо.

Чеканка, керноака и другие механические приемы исправления де­фектов сварных швов при испытании недопустимы. Недопустимо также устранение обнаруженных дефектов в котле, находящемся под давле­нием, а также подварка при наличии воды в котле.

На каждый котел на судне заведена Регистровая книга, в которую вносят результаты внутреннего освидетельствования, гидравлического испытания и наружного осмотра

Данные, полученные при освидетельствовании, можно рассматривать как предварительную дефектацию, которая начинается во время эксплуа­тации котла, в отличие от рабочей дефектации, которую выполняют после постановки судна на ремонт. Эти данные дают сведения о характерных отказах и неисправностях (коррозионных разрушениях, деформации тру­бок, состоянии кирпичной кладки топки котла, работе форсунок и ар­матуры и др.).

Рабочая дефект а вдя котлон включает в себя осмотр с применением оптических приборов, измерение деформаций, металлографические и меха­нические исследования металла. Для выявления дефектов используют магнитные, рентгеновские, ультразвуковые методы дефектоскопии. При дефектации в первую очередь выявляют остаточные деформации, уто­нение элементов, разрывы, нарушение непроницаемости, изменение струк­туры металла, степень поражения коррозией, крепление фундамента к корпусу судна и др

Определение дефектов трубок (водогрейных, пароперегревателя, экономайзера, воздухоподогревателя). Внешним осмотром определяют коррозионное поражение поверхности. Для металлографических и ме­ханических испытаний металла трубок (выяснение наличия перегрева, межкристаллитиой коррозии и др.) вырезают несколько трубок для из­готовления образцов и шлифов.

При механических испытаниях определяют нреяел прочности, отно­сительное удлинение, ударную вязкость Ухудшение механических ка­честв по сравнению с исходным!! данными допускается не более чем на 5-10%.

Тщательно производят металлографическое исследование и изучают структуру материала. Эти исследования позволяют установить причину разрыва трубок. Наличие мартснситной структуры может быть объясне­нием того, что разрыв произошел вследствие перегрева металла.

Для выявления трешин в концах трубок, развальцованных в труб­ных досках, рекомендуют применение магнитного способа дефектоскопии.

Определение дефектов коллектора. При дефг-ктацииkcujjii-i. ii>|>»m осматривают внутренние и наружные поверхности и отверстия для водо­грейных трубок, сварные щоы для выявления трешин. Отверстия дли водогрейных трубок обмеряют для проверки их фурмы. Осматривая внут­реннюю поверхность коллектора, обращают внимание на пояс уровня воды, где большая интенсивность коррозии. Трещины о сварных швах выявляют гаммзграфированием и ультразвуковым методом.

Трещины между отверстиями в трубных досках можно обнаружить травлением азотной или соляной кислотой нлн магнитным способом.

Для установлении глубины распространения трещины вырезают участок трубной доски и исследуют в лаборатории; допустимо в край­нем случае производить контрольные сверления.

При осмотре отверстий в трубной доске выявляют механические

повреждения и коррозию, отверстия обмеряют для проверки эллиптич­ности и расчета степени развальцовки в случае расточки отверстий. За­зор между отверстиями и неразвалыювашюй трубкой не должен пре­вышать 0,3-0,6 мм. Овальность отверстий в трубных досках допускается

не более 0,25 мм. В коллекторе допускается местное утонение вследствие

коррозии, но не более чем на 10 -12 % первоначальной толшины.

Определение дефектов деталей форсуночных и воздух она л равняющих устройств. При дефектации осматривают детали форсунок, измеряют сопловые отверстия, осматривают головку распылителя форсунки для обнаружения трещин

При осмотре распылителей контролируют тангенциальные канавки,

осматривают поверхность, обеспечивающую плотное прилегание рас­пылителя к головке, проверяют состояние рабочих поверхностей сопла, от которых зависит качество распыления. Отверстие сопла проверяют проходным и непроходным калибрами.

В ноздухонаправлнютих устройствах котла проверяют легкость движения тяг, осматривают лоласти.

В кирличиий кладке визуально проверяют, нет ли оплавления и аы- горания поверхности кладки, растрескивания и выпадения кирпичей В водоуказательных приборах необходимо проверить целостность к при­годность к эксплуатации счскол. В случае потери прозрачности стекла бракуют.

Главные предохранительные клапаны проверяют в действии до по­становки котла в ремонт. После разборки их осматривают и определяют состояние деталей.

1.5 Дефекты трубопроводных конструкций и причины их возникновения

Дефект – это любое несоответствие регламентированным нормам. Главной причиной появления дефектов является отклонение рабочего параметра от нормативного значения, обоснованного допуском.

Дефекты трубопроводных конструкций подразделяются на:

Дефекты труб;

Дефекты сварных соединений;

Дефекты изоляции.

Различают следующие дефекты труб:

Металлургические – дефекты листов и лент, из которых изготавливаются трубы, т.е. различного рода расслоения, прокатная плена, вкатанная окалина, поперечная разнотолщинность, неметаллические включения и др.

Технологические – связаны с несовершенством технологии изготовления труб, которые условно можно разделить на дефекты сварки и поверхностные дефекты (наклеп при экспандировании, смещение или угловатость кромок, овальность труб)

Строительные – обусловлены несовершенством технологии строительно-монтажных работ, нарушениями технологических и проектных решений по транспортировке, монтажу, сварке, изоляционно-укладочным работам (царапины, задиры, вмятины на поверхности труб).

Причины возникновения дефектов труб

Существующая технология прокатки металла, технология непрерывной разливки стали на отдельных металлургических заводах является одной из причин изготовления некачественных труб. Нередки случаи разрушения по причине расслоения металла.

На трубных заводах входной контроль сырья несовершенен или полностью отсутствует. Это приводит к тому, что дефекты сырья становятся дефектами труб.

При изготовлении труб приходится подвергать металл нагрузкам, при которых он работает за пределом текучести. Это приводит к появлению наклепа, микрорасслоений, надрывов и других скрытых дефектов. Из-за кратковременности последующих заводских испытаний труб (20…30 с) многие скрытые дефекты не выявляются и «срабатывают» уже в процессе эксплуатации МТ.

В недостаточной степени контролируется заводами и геометрическая форма труб. Так, на трубах диаметром 500…800мм смещение кромок достигает 3мм (при норме для спирально-шовных труб 0,75…1,2мм), овальность – 2%

Механические воздействия при погрузочно-разгрузочных, транспортных и монтажных операциях приводят к появлению на трубах вмятин, рисок, царапин, задиров

При очистке трубопроводов скребками-резцами возникают дефекты пластической деформации локальных участков поверхности трубы – риски, подрезы и т.д. Эти концентраторы напряжений являются потенциальными очагами развития коррозионно-усталостных трещин. Очистка трубопроводов с помощью проволочных щеток исключает повреждения труб в виде подрезов, но при определенных режимах обработки приводит к деформациям поверхности металла, снижающим его коррозионную стойкость.

Коррозионные повреждения труб (внешние - в местах нарушения сплошности изоляции, а внутренние - в местах скоплений воды)

Дефект сварного соединения – это отклонения разного рода от установленных норм и технических требований, которые уменьшают прочность и эксплуатационную надежность сварных соединений и могут привести к разрушению всей конструкции. Наиболее часто встречаются дефекты формы и размеров сварных швов, дефекты макро- и микроструктуры, деформация и коробление сварных конструкций.

Нарушение формы и размеров шва свидетельствуют о наличии таких дефектов, как наплывы (натеки), подрезы, прожоги, незаваренные кратеры.

Наплывы – чаще всего образуются при сварке горизонтальными швами вертикальных поверхностей, в результате натекания жидкого металла на кромки холодного основного металла. Они могут быть местными (в виде отдельных застывших капель) или протяженными вдоль шва. Причинами возникновения наплывов являются большая сила сварочного тока, длинная дуга, неправильное положение электрода, большой угол наклона изделия при сварке на подъем и спуск.

Подрезы – представляют собой углубления, образующиеся в основном металле вдоль края шва. Подрезы образуются из-за повышенной мощности сварочной горелки и приводят к ослаблению сечения основного металла и разрушению сварного соединения.

Прожоги – это проплавление основного или наплавленного металла с возможным образованием сквозных отверстий. Они возникают вследствие недостаточного притупления кромок, большого зазора между ними, большой силы сварочного тока или мощности горелки при невысоких скоростях сварки. Особенно часто прожоги наблюдаются в процессе сварки тонкого металла и при выполнении первого прохода многослойного шва, а также при увеличении продолжительности сварки, малом усилии сжатия и наличии загрязнений на поверхностях свариваемых деталей или электродах (точечная и шовная контактная сварка).

Незаваренные кратеры – образуются при резком обрыве дуги в конце сварки. Они уменьшают сечение шва и могут явиться очагами образования трещин.

К дефектам макроструктуры относят дефекты: газовые поры, шлаковые включения, непровары, трещины, выявляемые с помощью средств оптики (увеличение не более чем в 10 раз).

Газовые поры – образуются в сварных швах вследствие быстрого затвердевания газонасыщенного расплавленного металла, при котором выделяющиеся газы не успевают выйти в атмосферу.

Рисунок 2 – Газовые поры

Такой дефект наблюдается при повышенном содержании углерода в основном металле, наличии ржавчины, масла и краски на кромках основного металла и поверхности сварочной проволоки, использовании влажного или отсыревшего флюса.

Шлаковые включения – результат небрежной очистки кромок свариваемых деталей и сварочной проволоки от окалины, ржавчины и грязи, а также (при многослойной сварке) неполного удаления шлака с предыдущих слоев.

Они могут возникать при сварке длинной дугой, неправильном наклоне электрода, недостаточной силе сварочного тока, завышенной скорости сварки. Шлаковые включения различны по форме (от сферической до игольчатой) и размером (от микроскопической до нескольких миллиметров). Они могут быть расположены в корне шва, между отдельными слоями, а также внутри наплавленного металла. Шлаковые включения ослабляют сечение шва, уменьшают его прочность и являются зонами концентрации напряжений.

Рисунок 3 – Шлаковые включения

Непровары – местное несплавление основного металла с наплавлением, а также несплавление между собой отдельных слоев шва при многослойной сварке из-за наличия тонкой прослойки окислов, а иногда и грубой шлаковой прослойки внутри швов.

Рисунок 4 – Непровары

Причинами непроваров являются: плохая очистка металла от окалины, ржавчины и грязи, малый зазор в стыке, излишнее притупление и малый угол скоса кромок, недостаточная сила тока или мощности горелки, большая скорость сварки, смещение электрода в сторону от оси шва. Непровары по сечению шва могут возникнуть из-за вынужденных перерывов в процессе сварки.

Трещины – в зависимости от температуры образования подразделяют на горячие и холодные.

Рисунок 5 – Трещины

Горячие трещины появляются в процессе кристаллизации металла шва при температуре 1100 – 1300 С. Их образование связано с наличием полужидких прослоек между кристаллами наплавленного металла шва в конце его затвердевания и действием в нем растягивающих усадочных напряжений. Повышенное содержание в металле шва углерода, кремния, водорода и никеля также способствует образованию горячих трещин, которые обычно располагаются внутри шва. Такие трещины выявить трудно.

Холодные трещины возникают при температурах 100 – 300 С в легированных сталях и при нормальных (менее 100 С) температурах в углеродистых сталях сразу после остывания шва или через длительный промежуток времени. Основная причина их образования – значительное напряжение, возникающее в зоне сварки при распаде твердого раствора и скопление под большим давлением молекулярного водорода в пустотах, имеющихся в металле шва. Холодные трещины выходят на поверхность шва и хорошо заметны.

К дефектам микроструктуры сварного соединения относят

Микропоры,

Микротрещины,

Нитридные, кислородные и другие неметаллические включения,

Крупнозернистость,

Участки перегрева и пережога.

Дефекты изоляции - нарушение сплошности; адгезия; заниженная толщина; гофры; морщины; задиры; царапины; проколы.

Основные причины образования дефектов изоляционного покрытия на трубопроводах:

при хранении и подготовке материалов – засорение битума и обводнение готовой мастики и ее составляющих;

при приготовлении грунтовки и мастики – небрежная дозировка составляющих; несоблюдение режима разогревания котла; недостаточное размешивание битума при приготовлении грунтовки;

при нанесении грунтовки и битумной мастики – загустение грунтовки; образование пузырьков на поверхности трубопровода; оседание пыли на поверхность труб; пропуски грунтовки и мастики на поверхности трубопровода и особенно около сварных швов; неровное нанесение мастики; охлаждение мастики; конструктивные недостатки изоляционной машины;

при нанесении армирующих и оберточных рулонных материалов – нарушение однородности покрытия; выдавливание слоя мастики; недостаточное погружение стеклохолста в мастику;

при нанесении полимерных лент – сквозные отверстия в ленте; несплошной клеевой слой; неравномерность толщины ленты в рулоне; неправильная регулировка намоточной машины; нарушение температурного режима нанесения ленты; плохая очистка поверхности труб;

при укладке трубопровода – нарушение технологии укладки, особенно при раздельном способе укладки; захват изолированных труб тросом; трение трубопровода о стенки траншеи при укладке; отсутствие подготовки дна траншеи; отсутствие подсыпки не менее 10см дна траншеи на участках с каменистыми и щебенистыми грунтами; плохое рыхление мерзлых грунтов и особенно отсутствие регулировки изоляционных машин;

при эксплуатации трубопровода – действие грунта; вес трубопровода; почвенные воды; микроорганизмы; корни растений; температурные воздействия; агрессивность грунта.






Ущерба. Рисунок 3.6 - Схема процесса формирования дерева событий и поиска пути движения по нему. 4. Программное обеспечение ситуационного управления безопасностью магистральных газопроводов 4.1 Описание программы управления безопасностью магистральных газопроводов Программа предназначена для работы в операционных средах MicroSoft Windows 98/NT/XP. Windows обеспечивает удобный и...




КВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, ...