Схема сирены на однопереходном транзисторе. Самодельная сирена. Принцип работы сирены

Казалось бы, для сборки сирены понадобиться покупать микросхему для обеспечения необходимого усиления сигнала, городить обвес на нее. Однако для воспроизведения подобного сигнала с не высокими требованиями к качеству звука, можно легко обойтись сборкой генератора на транзисторах. Схема представлена ниже.

Подобная сборка обеспечивает достаточно громкий звук и для охранной сигнализации вполне подойдет, работает естественно все это дело от бортовой сети.

Вся элементная база распространенная и найдется в любом радиотехническом магазине. Схема вообще не очень требовательна к элементной базе при отсутствии какого-нибудь элемента можно его заменить любым попавшимся из старого хлама.

Еще одним из достоинств схемы является то, что транзисторы не обязательно устанавливать на теплоотводы, даже при длительной работе они не перегреваются.

НА схеме штрихпунктирной линией обозначены транзисторы, обозначающие два различных генератора, один служит для задания частоты звучания, другой для ее изменения, путем подбора различных типов транзисторов. Остальные компоненты виде, резисторов и диодов я думая не составит труда найти. В качестве головки можно использовать любую старую сигнализации или пищалку.

Для увеличения мощности, даже из схемы понятно нужно увеличить мощность выходного транзистора КТ817. К примеру, его можно заменить на КТ819, однако при повышении мощности желательно установить транзистор на теплоотвод, иначе долго он не прослужит.

Нужно понимать, что для сигнализации совсем не обязательно городить низкоомную головку, тем более она сильно нагрузит схему. Поэтому желательно использовать простые высокоомные головки (8-16 Ом).

И ещё хочу отметить один момент, если у кого проблемы с турбиной, то есть неправильно настроена или ещё что, то есть отличная компания, которая только этим и занимается.

Сирена используется для подачи мощного и сильного звукового сигнала для привлечения внимания людей и применяется в системах пожарной сигнализации и автоматики, а также в сочетании с устройствами сигнализации на различных охраняемых объектах.

Генераторы в схеме отмечены желтой рамкой. Первый Г1 задаёт частоту изменения тона, а второй Г2 собственно сам тон, который плавно меняется на транзисторе VT1 включенного последовательно ссопротивлением R2. Для выбора требуемого звучания можно вместо сопротивлений R1, R2 использовать подстроечные резисторы тех же значений.

При включение напряжения питания, звукоизлучатель начинает генерировать тональный акустический сигнал, высота тона меняется с высокого на низкий и обратно. Сигнал звучит непрерывно, изменяется только тон звука, который переключаются с частотой 3-4 Гц.

В схеме сирены применены два мультивибратора на элементах D1.1 и D1.2 микросхемы К561ЛН2, управляющий тоном, и мультивибратор на элементах D1.3 и D1.4 этой же микросхемы, генерирующий тональные сигналы. Частота импульсов, генерируемая первым мультивибратором на элементах D1.3 и D1.4 зависит от элементов C2, R2 и C3, R4. Изменять частоту следования импульсов, а значит и тона звукового сигнала можно как сопротивлениями, так и емкостями.

Предположим, в начальный момент на выходе мультивибратора на элементах D1.1 и D1.2 имеется уровень логической единицы. Так как на катоды диодов VD1 и VD2 поступает плюс, то диоды будут запертыми. Сопротивления R4 и R5, в работе схемы не участвуют и частота на выходе мультивибратора минимальна, звучит низкотональный сигнал.

Как только на выходе этих элементов установится логический ноль диоды VD1 и VD2 откроются и подсоединят сопротивления R4 и R5. В результатечастота навыходе мультивибратора возрастет.

Используемые в схеме транзисторы КТ815 можно заменить на КТ817, а КТ814на КТ816. Диоды - КД521, КД522, КД503, КД102.

Следующее устройство может быть использовано в качестве аварийного сигнализатора или звукового сигнала для горного велосипеда. Оно представляет собой двухтональную сирену и состоит из тактового генератора на элементах DD1.1-DD1.3, двух тональных генераторов (первого на элементах DD2.1, DD2.2 и второго на элементах DD2.3, DD2.4), согласующего каскада с усилителем мощности на элементе DD1.4 и транзисторе VT1.

Схема состоит из двух генераторов. Первый используется для генерации тона, второй для изменения и модулирования.

Для максимального уровня громкости, необходимо, чтобы на пьезоэлемент поступала частота эквивалентная его резонансной частоте по мостовой схеме.

Основа конструкции мощный мультивибратор 4047, работающий в нестабильном режиме. Все это управляется мощным полевым MOSFET-транзистором VТ1, которым управляет таймер NE555, посредством генерации соответствующих прямоугольных импульсов низкой частоты, в результате чего осуществляется пожарной сирены. Переключение режимов работы непрерывно или прерывисто устанавливается с помощью тумблера.

Выводы 10 и 11 микросборки 4047 выдают противофазные, сигналы с которых управляют мостом на четырех MOSFET. Для получения максимальной громкости, то есть установки резонансной частоту пьезоэлемента, в конструкцию добавлен подстроечное сопротивление R6.

Эта схема составлена из сочетания музыкального синтезатора на микросхеме УМС-8-08 с мощным выходным каскадом электронной сирены. Для запуска схемы применено реле, обмотка которого имеет гальваническую развязку от остальной части схемы.


Микросхема УМС имеет стандартную схему подключения. Три кнопочных выключателя S1-S3 дают возможность настроить микросхему на исполнение одной из мелодий. При нажатии на первую кнопку начинается воспроизведение мелодии, а нажимая на третью можно перебрать мелодии и выбрать нужную.


Подборка нескольких схем сирен на микроконтроллерах PIC

Данная схема представляет собой простую многотональную сирену на основе микросборки UM3561


В схеме использован динамик на 8 Ом, мощностью 0,5 Вт. С помощью двух переключателей осуществляется выбор и воспроизведения различных тонов звучания тревожного сигнала. Каждая позиция генерирует свой собственный звуковой эффект.

Автор статьи - учащийся седьмого
класса общеобразователь­ного лицея № 17 г. Северодвинска. Он занимается в
городском центре юношеского научно-технического творчества в кружке
радиоэлектроники, которым руководит Виктор Иванович Хохленко. Предлагаемые
устройства могут найти применение в системах тревожного оповещения и охранной
сигнализации.

Звуковые электромеханические и
электронные сирены широко ис­пользуются для оповещения в экстрен­ных ситуациях.
На небольших пред­приятиях, в школах, особенно в сельс­кой местности, можно
применить пред­лагаемые сирены, собранные из до­ступных недорогих деталей. За
основу были приняты схемы устройств, описа­ние которых дано в книге Иванова Б.
С. “Самоделки юного радиолюбителя” (М.: ДОСААФ, 1988, с. 27-31).

Схема сирены на транзисторах пока­зана
на рис. 1. Генератор звуковой частоты собран на транзисторах VT4, VT5 по схеме
несимметричного мульти­вибратора. Его нагрузкой является ди­намическая головка
ВА1. Частота гене­рации зависит от емкости конденсато­ра С4, сопротивлений
резисторов R7, R8, параметров транзисторов VT4, VT5 и напряжения на
конденсаторе СЗ. На транзисторах VT1, VT2 по схеме сим­метричного
мультивибратора собран генератор инфразвуковой частоты, на транзисторе VT3 -
эмиттерный повто­ритель.

Выходной сигнал генератора инфра­звуковой
частоты с периодом следова­ния импульсов несколько секунд через резистор R5 поступает
на базу транзи­стора VT3. Когда транзистор VT2 за­крыт, на резисторе R4 напряжение
близко к нулю, транзистор VT3 открыт и происходит зарядка конденсатора СЗ через
резистор R6. Когда транзистор VT2 открывается, напряжение на резис­торе R4 возрастает
почти до напряже­ния питания, что приводит к закрыва­нию транзистора VT3 и
разрядке кон­денсатора СЗ через резисторы R7, R8 и базу транзистора VT4.

Поскольку напряжение на конденса­торе
СЗ периодически плавно изме­няется (возрастает, убывает и снова возрастает), то
в соответствии с ним изменяется частота звукового генера­тора. Так формируется
сигнал сирены, тональность которого также плавно из­меняется.

На рис. 2 показана схема второй
сирены, в которой генератор инфразву- ковой частоты построен на логической
микросхеме К561ЛЕ5. На элементах DD1.1-DD1.3 собран генератор пря­моугольных
импульсов, скважность ко­торых (отношение периода следования к длительности
импульса) зависит от сопротивления резисторов R2 и R3. Элемент DD1.4 работает
как инвертор сигнала. Генератор звуковой частоты собран на транзисторах VT1, VT2
по такой же схеме, как и в первой сирене. Сигнал с выхода элемента DD1.4 управ­ляет
частотой этого генератора. При напряжении высокого уровня на выходе элемента DD1.4
происходит зарядка конденсатора С2, при низком уровне - его разрядка.

Большинство деталей первой и вто­рой
сирен, кроме динамической голов­ки, устанавливают на печатных платах из
односторонне фольгированного стеклотекстолита толщиной 1… 1,5 мм, чертежи
которых показаны на рис. 3 и рис. 4 соответственно. Внешний вид смонтированных
устройств - на рис. 5 и рис. 6.

Применены резисторы С2-23, МЯТ,
оксидные конденсаторы - импортные, в звуковом генераторе применен конден­сатор
К73-9, в генераторе инфранизкой частоты второй сирены - К10-17. Транзисторы
структуры п-р-п можно применить любые из серий КТ315, КТ3102. Транзистор КТ816Б
заменим на транзисторы серий КТ814, КТ816 с любыми буквенными индексами.

Микросхему К561ЛЕ5 можно заменить
на К561ЛА7. Диоды - любые кремние­вые маломощные импульсные или выпрямительные,
например, серий КД102, КД103, КД510, КД521, КД522, Д220. Динами­ческая головка
- любая средне- частотная или широкополосная с сопротивлением катушки не ме­нее
8 Ом и мощностью более 2 Вт. Питать устройства можно от батареи аккумуляторов
или гальваниче­ских элементов, а также от сетевых ста­билизированных источников
питания с выходным током до 0,5 А.

Налаживания не требуется. При
желании то­нальность сигна­ла первой сире­ны можно изме­нять подборкой
конденсатора С4, а второй - СЗ. Скорость
измене­ния частоты в пер­вой сирене осу­ществляют под­боркой конден­сатора С1, а во второй - кон­денсатора С1 или резисторов R2,
R3.

Устройства ра­ботоспособны в
интервале питаю­щего напряжения 4… 12 В. Однако при этом, во-пер­вых,
изменится тональность, что может потребо­вать дополни­тельного нала­живания.
Во-вто­рых, при увели­чении питающе­го напряжения необходимо при­менять динами­ческие
головки большей мощно­сти, а при ис­пользовании ма­ломощных после­довательно с
ни­ми следует вклю­чить гасящий ре­зистор сопротив­лением 1…5 Ом и мощностью
не­сколько ватт.

Устройства можно использо­вать
как источник сигнала для мощ­ного УЗЧ. Для этого динамичес­кую головку за­меняют
резисто­ром сопротивлением 10… 12 Ом. Сигнал снимают с раз­делительного
конденсатора (С5 - на рис. 1). Для ослабления сигнала можно применить
резистивный делитель. В таком варианте сирена была применена совместно с мощным
трансляционным УЗЧ и использовалась в лицее для подачи сигнала на учениях по
гражданс­кой обороне.

состоит из двух генераторов прямоугольных импульсов. Первый генератор собран на элементах DD1.1 и DD1.2. Он генерирует импульсы фиксированной частоты следования (около 0,5 Гц), которая определяется номиналами деталей C1R2. Резистор R1 защищает входы элемента DD1.1 от перегрузки.

К выходу первого генератора подключена интегрирующая цепь R3R4C2, которая формирует пилообразное напряжение, управляющее частотой второго генератора. От номиналов деталей этой цепи зависят скорость нарастания и спада частоты сирены, а от соотношения сопротивлений резисторов R3 и R4 - пределы ее изменения.

Второй генератор - генератор тона сирены. Он выполнен на элементах DD1.3 и DD1.4 по схеме симметричного мультивибратора. Частота следования импульсов генератора и их длительность зависят от номиналов резисторов R5, R6 и конденсаторов СЗ, С4.

Ко второму генератору подключены эмиттерные повторители на транзисторах VT1-VT4. Такое необычное соединение транзисторов напоминает две мостовые схемы, на одни диагонали которых поступает входной сигнал, а к другим подключена динамическая головка ВА1. Подобный каскад позволяет вчетверо увеличить выходную мощность сирены по сравнению с обычным усилителем мощности на эмиттерных повторителях и подключить динамическую головку без оксидного переходного конденсатора.

Рис.1 Схема электронной сирены

В устройстве использованы постоянные резисторы МЛТ-0,125, конденсаторы КМ-6 (C1), К53-1 (С2), КМ-5 (СЗ, С4). Транзисторы могут быть любые другие из указанных на схеме серий. Вместо микросхемы К176ЛА7 подойдет К176ЛЕ5, К561ЛА7, К561ЛЕ5 без каких-либо изменений деталей и печатной платы. Под указанные детали и разработана печатная плата, чертеж которой приведен на рис. 2.

Плату размещают в корпусе собираемой игрушки и соединяют с ней гибкими монтажными проводниками выключатель SAI, источник питания (например батарею 3336) и динамическую головку ВА1 (мощностью 0,1-0,5 Вт со звуковой катушкой сопротивлением 6-10 Ом).



Прежде чем налаживать устройство, временно отключают динамическую головку. Затем подают на сирену питание и проверяют осциллографом работу первого генератора - на выводе 4 элемента DD1.2 должны быть прямоугольные импульсы. После этого наблюдают сигнал (размахом не менее 2 В) пилообразной формы на конденсаторе С2. Далее убеждаются в том, что на выводах 10 и 11 микросхемы есть прямоугольные импульсы, частота следования которых периодически (с частотой примерно 0,5 Гц) изменяется. Такой же сигнал должен быть и на эмиттерах всех транзисторов. Вот теперь можно подключить динамическую головку и использовать сирену по назначению.

Рис.3 Выходной каскад

Если вам понадобится более мощная сирена, соберите дополнительную приставку (рис. 3) и подключите ее вместо динамической головки. А к выходу приставки подключите головку ВА1 соответствующей мощности (можно излучатель от мегафона). Саму сирену, как и прежде, питают от батареи 3336, а приставку - от мощного источника (например от аккумулятора) напряжением 10... 13 В. Транзисторы приставки необходимо установить на радиаторы, площадь которых зависит от требуемой выходной мощности приставки.

В. Корецкий г. Москва