Наклон ас в зависимости от площади помещения. Расчет расположения ас и слушателя в комнате. Предварительный расчет площади световых проемов и КЕО при верхнем освещении

проемов S o

Для определения требуемой суммарной площади световых проемов по формуле (1.3) необходимо:

1. Нормируемое значение КЕО для здания административного района, где производится оценка условий освещения рассчитать по формуле (1.2).

2. Измерить длину А, ширину (глубину) помещения В от внутренней поверхности наружной стены до стены наиболее удаленной от светового проема, высоту верхней грани световых проемов над уровнем условной рабочей поверхности h .

3. По измеренным значениям вычислить значения отношений:

h ).

По табл. 1.7 определить световую характеристику световых проемов η о в зависимости от значений этих отношений.

Таблица 1.7

Значение световой характеристики световых проемов

при боковом освещении

4. Вычислить площадь пола.

5. По табл. 1.8 определить коэффициент запаса в зависимости от состояния воздушной среды в помещении и угла наклона светопропускающего материала к горизонту.


Таблица 1.8

Коэффициенты запаса для естественного освещения

Примечание. Значения коэффициента запаса, указанные в гр. 3-6 следует умножать: на 1,1 - при применении узорчатого стекла, стеклопластика, армопленки и матированного стекла, а также при использовании световых проемов для аэрации; на 0,9 - при применении органического стекла.

6. Общий коэффициент светопропускания τ о вычислить

по формуле (1.4):

где τ 1 – коэффициент светопропускания материала по табл.1.9;

τ 2 – коэффициент, учитывающий потери света в переплетах светового проема. Размеры светового проема принимаются равными размерам коробки переплета по наружному обмеру по табл.1.9; τ 3 – коэффициент, учитывающий потери света в несущих конструкциях (при боковом освещении τ 3 = 1); τ 4 – коэффициент, учитывающий потери света в солнцезащитных устройствах по табл.1.10 (в случае не применения солнцезащитных устройств τ 4 = 1); τ 5 – коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, принимается равным 0,9, а при боковом освещении τ 5 = 1;

Таблица 1.9

Значения коэффициентов τ 1 и τ 2


Окончание табл. 1.9

Примечание. Значения коэффициентов τ 1 и τ 2 для светопропускающего материала и переплетов, не указанных в табл. 1.9, следует определять по ГОСТ 26602.4.

Таблица 1.10

Значения коэффициентов τ 4


Окончание табл.1.10

7. Вычислить значения отношений:

Длина помещения / глубина помещения (А/В);

Глубина помещения / высота верхней грани световых проемов над уровнем условной рабочей поверхности (В/h );

Расстояние от расчетной точки до внутренней поверхности наружной стены / глубина помещения (L /В).

По табл. 1.11 определить коэффициент, учитывающий повышение КЕО r 1 в зависимости от значений этих отношений и расчетного значения средневзвешенного коэффициента отражения внутренних поверхностей помещения , принимаемого равным 0,50 в жилых и общественных помещениях.

Результаты измерений и расчетов занести в табл. 1.12.

Необходимое количество окон в помещении определяется по формуле (1.5):

где - площадь одного окна, м 2 .

Площадь одного окна определяется по формуле (1.6):

где - ширина одного окна, м; - высота одного окна, м.

Расчет естественного освещения помещений производится без учета мебели, оборудования и других затеняющих предметов. Установленные расчетом размеры световых проемов допускается изменять на ±10%.


Таблица 1.11

Значения коэффициента r 1 для условной рабочей поверхности


Окончание табл. 1.11


Таблица 1.12

Исходные, измеренные и расчетные данные


Контрольные вопросы

1. Перечислите основные количественные показатели освещения?

2. Какая светотехническая величина воспринимается органами зрения человека?

3. В каких единицах измеряется освещенность, световой поток, яркость и сила света?

4. Недостатки естественного освещения?

5. Что такое совмещенное освещение? В каких случаях оно применяется? В чем его преимущество?

6. Виды естественного освещения?

7. Что такое боковое естественное освещение?

8. Что такое верхнее естественное освещение?

9. Что такое коэффициент естественной освещенности (КЕО)? В какой точке помещения нормируется минимальное значение КЕО при естественном одностороннем боковом освещении в учебных помещениях?

10. В зависимости, от каких величин выбирается нормируемое значение КЕО для исследуемого помещения?

11. Как изменится КЕО в заданной точке помещения, если наружная освещенность увеличилась вдвое?

12. Что учитывает коэффициент светового климата?

13. Что учитывает коэффициент запаса при расчете естественного освещения?

14. Принцип действия люксметра-пульсаметра?

15. Для чего применяются насадки на люксметр-пульсаметр?

Расчет естественного освещения

Целью расчета естественного освещения является определение площади световых проемов, то есть количества и геометрических размеров окон, обеспечивающих нормированное значение КЕО.

Выбор значений КЕО

1. В соответствии со СНиП 23-05 территория Российской Федерации зонирована на пять групп административных районов по ресурсам светового климата. Перечень административных районов, входящих в группы обеспеченности естественным светом, приведен в таблице 1.

2. Значения КЕО в жилых и общественных зданиях, расположенных в первой группе административных районов, принимают в соответствии со СНиП 23-05.

3. Значения КЕО в жилых и общественных зданиях, расположенных во второй, третьей, четвертой и пятой группах административных районов, определяют по формуле

e N = e н m N , (1)

где N - по таблице 1;

е н - нормированное значение КЕО по приложению И СНиП 23-05;

m N - коэффициент светового климата, принимаемый по таблице 2.

Полученные по формуле (1) значения следует округлять до десятых долей.

4. Размеры и расположение световых проемов в помещении, а также соблюдение требований норм естественного освещения помещений определяют предварительным и проверочным расчетами.

Предварительный расчет площади световых проемов и КЕО при боковом освещении

1. Предварительный расчет размеров световых проемов при боковом освещении без учета противостоящих зданий следует проводить с применением графиков, приведенных для помещений жилых зданий на рисунке 3, для помещений общественных зданий - на рисунке 4, для школьных классов - на рисунке 5. Расчет следует производить в следующей последовательности:

Рисунок 3 А с.о / А п при боковом освещении жилых помещений

Рисунок 4 - График для определения относительной площади световых проемов А с.о / А п при боковом освещении помещений общественных зданий

Рисунок 5 - График для определения относительной площади световых проемов А с.о / А п при боковом освещении школьных классов

а) в зависимости от разряда зрительной работы или назначения помещения и группы административных районов по ресурсам светового климата Российской Федерации по СНиП 23-05 определяют нормированное значение КЕО для рассматриваемого помещения;

d п h 01 и отношение d п / h 01 ;

в) на оси абсцисс графика (рисунки 3, 4 или 5) определяют точку, соответствующую определенному значению d п / h 01 через найденную точку проводят вертикальную линию до пересечения с кривой, соответствующей нормированному значению КЕО. По ординате точки пересечения определяют значение А с.о / А п ;

г) разделив найденное значение А с.о / А п на 100 и умножив на площадь пола, находят площадь световых проемов в м 2 .

2. В случае когда размеры и расположение световых проемов в проекте зданий были выбраны по архитектурно-строительным соображениям, предварительный расчет значений КЕО в помещениях следует производить по рисункам 3-5 в следующей последовательности:

а) по строительным чертежам находят суммарную площадь световых проемов (в свету) А с.о и освещаемую площадь пола помещения А п и определяют отношение А с.о / А п ;

б) определяют глубину помещения d п , высоту верхней грани световых проемов над уровнем условной рабочей поверхности h 01 и отношение d п / h 01 ;

в) с учетом типа помещений выбирают соответствующий график (рисунки 3, 4 или 5);

г) по значениям А с.о / А п и d п / h 01 на графике находят точку с соответствующим значением КЕО.

Графики (рисунки 3-5) разработаны применительно к наиболее часто встречающимся в практике проектирования габаритным схемам помещений и типовому решению светопрозрачных конструкций - деревянным спаренным открывающимся переплетам.

Проверочный расчет КЕО при боковом освещении

1. Проверочный расчет КЕО Расчет КЕО следует производить в следующей последовательности:

а) график I накладывают на поперечный разрез помещения таким образом, чтобы его полюс (центр) 0 совместился с расчетной точкой А (рисунок 8), а нижняя линия графика - со следом рабочей поверхности;

б) по графику I подсчитывают число лучей, проходящих через поперечный разрез светового проема от неба n 1 и от противостоящего здания в расчетную точку А ; Расчетные точки принимаются на расстоянии 1 м от поверхности стен (перегородок).

в) отмечают номера полуокружностей на графике I , совпадающих с серединой С 1 участка светопроема, через который из расчетной точки видно небо, и с серединой С 2 участка светопроема, через который из расчетной точки видно противостоящее здание (рисунок 8);

г) график II (рисунок 7) накладывают на план помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру концентрической полуокружности (пункт «в»), проходили через точку С 1 (рисунок 8);

д) подсчитывают число лучей п 2 по графику II , проходящих от неба через световой проем на плане помещения в расчетную точку А ;

е) определяют значение геометрического КЕО, учитывающего прямой свет от неба;

ж) график II накладывают на план помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру концентрической полуокружности (пункт «в»), проходили через точку С 2 ;

з) подсчитывают число лучей по графику II , проходящих от противостоящего здания через световой проем на плане помещения в расчетную точку А ;

и) определяют значение геометрического коэффициента естественной освещенности, учитывающего свет, отраженный от противостоящего здания;

к) определяют значение угла , под которым видна середина участка неба из расчетной точки на поперечном разрезе помещения;

л) по значению угла и заданным параметрам помещения и окружающей застройки определяют значения коэффициентов q i , b ф , k ЗД , r о , и K з , и вычисляют значение КЕО в расчетной точке помещения.

Рисунок 6 - График I

Рисунок 6 - График II для расчета геометрического КЕО

Примечания

1 Графики I и II применимы только для световых проемов прямоугольной формы. 2 План и разрез помещения выполняют (вычерчивают) в одинаковом масштабе.

А - расчетная точка; 0 - полюс графика I ; С 1 - середина участка светового проема, через который из расчетной точки видно небо;

Предварительный расчет площади световых проемов и КЕО при верхнем освещении

    Для предварительного расчета площади световых проемов при верхнем освещении следует применять следующие графики: для зенитных фонарей с глубиной проема (светопроводной шахты) до 0,7 м - по рисунку 9; для шахтных фонарей - по рисункам 10, 11; для фонарей прямоугольных, трапециевидных, шед с вертикальным остеклением и шед с наклонным остеклением - по рисунку 12.

Таблица 1

Тип заполнения

Значения коэффициента K 1 для графиков на рисунках

2, 3

Один слой оконного стекла в стальных одинарных глухих переплетах

1,26

То же, в открывающихся переплетах

1,05

Один слой оконного стекла в деревянных одинарных открывающихся переплетах

1,13

1,05

Три слоя оконного стекла в раздельно-спаренных металлических открывающихся переплетах

0,82

То же, в деревянных переплетах

0,63

0,59

Два слоя оконного стекла в стальных двойных открывающихся переплетах

0,75

То же, в глухих переплетах

Стеклопакеты (два слоя остекления) в стальных одинарных открывающихся переплетах*

1,00

То же, в глухих переплетах*

1,15

Стеклопакеты (три слоя остекления) в стальных глухих спаренных переплетах*

1,00

Пустотелые стеклянные блоки

0,70

* При применении других видов переплетов (ПВХ, деревянные и др.) коэффициент K 1 принимают по таблице 3 до проведения соответствующих испытаний.

Площадь световых проемов фонарей А с.ф определяют по графикам на рисунках 9-12 в следующей последовательности:

а) в зависимости от разряда зрительной работы или назначения помещения и группы административных районов по ресурсам светового климата Российской Федерации по СНиП 23-05;

б) на ординате графика определяют точку, соответствующую нормированному значению КЕО, через найденную точку проводят горизонталь до пересечения с соответствующей кривой графика (рисунки 9-12), по абсциссе точки пересечения определяют значение А с.ф / А п ;

в) разделив значение А с.ф / А п на 100 и умножив на площадь пола, находят площадь световых проемов фонарей в м 2 .

Предварительный расчет значений КЕО в помещениях следует производить с применением графиков на рисунках 9-12 в следующей последовательности:

а) по строительным чертежам находят суммарную площадь световых проемов фонарей А с.ф , освещаемую площадь пола помещения А п и определяют отношение А с.ф / А п ;

б) с учетом типа фонаря выбирают соответствующий рисунок (8, 10, 11или 12);

в) на выбранном рисунке через точку с абсциссой А с.ф / А п проводят вертикальную линию до пересечения с соответствующим графиком; ордината точки пересечения будет равна расчетному среднему значению коэффициента естественной освещенности е ср .

Рисунок 9 е ср в помещениях с зенитными фонарями с глубиной проема до 0,7 м и размерами в плане, м:

1 — 2,9×5,9; 2 3 — 1,5×1,7

Рисунок 10 - График для определения среднего значения КЕО е ср в общественных помещениях с шахтными фонарями с глубиной светопроводной шахты 3,50 м и размерами в плане, м:

1 — 2,9×5,9; 2 — 2,7×2,7; 2,9×2,9; 1,5×5,9; 3 — 1,5×1,7

Рисунок 11 - График для определения среднего значения КЕО е ср в общественных помещениях с шахтными фонарями диффузного света с глубиной светопроводной шахты 3,50 м и размерами в плане, м:

1 — 2,9×5,9; 2 — 2,7х 2,7; 2,9×2,9; 1,5×5,9; 3 — 1,5×1,7

1 - трапециевидный фонарь; 2 - шед, имеющий наклонное остекление; 3 - прямоугольный фонарь; 4 - шед, имеющий вертикальное остекление

Рисунок 12 - График для определения среднего значения КЕО е cp в общественных помещениях с фонарями

Проверочный расчет КЕО при верхнем освещении

Расчет КЕО производят в следующей последовательности:

а) график I (рисунок 6) накладывают на поперечный разрез помещения таким образом, чтобы полюс (центр) 0 графика совмещался с расчетной точкой, а нижняя линия графика - со следом рабочей поверхности. Подсчитывают число радиально направленных лучей графика I , проходящих через поперечный разрез первого проема (n 1 ) 1 , второго проема - (n 1 ) 2 , третьего проема - (n 1 ) 3 и т. д.; при этом отмечают номера полуокружностей, которые проходят через середину первого, второго, третьего проемов и т. д.;

б) определяют углы , , и т. д. между нижней линией графика I и линией, соединяющей полюс (центр) графика I с серединой первого, второго, третьего проемов и т. д.;

в) график II (рисунок 7) накладывают на продольный разрез помещения; при этом график располагают так, чтобы его вертикальная ось и горизонталь, номер которой должен соответствовать номеру полуокружности на графике I , проходили через середину проема (точка C ). Подсчитывают число лучей по графику II , проходящих через продольный разрез первого проема (n 2 ) 1 , второго проема - (п 2 ) 2 , третьего проема - (n 2 ) 3 и т. д.;

г) вычисляют значение геометрического КЕО , в первой точке характерного разреза помещения по формуле

, (2)

где Р - число световых проемов; q - коэффициент, учитывающий неравномерную яркость участка небосвода, видимого из первой точки соответственно под углами , , и т. д.;

д) повторяют вычисления в соответствии с пунктами «а», «б», «в», «г» для всех точек характерного разреза помещения до N включительно (где N - число точек, в которых производят расчет КЕО);

е) определяют среднее значение геометрического КЕО;

ж) по заданным параметрам помещения и световых проемов определяют значения r 2 , k ф , ;

Проверочный расчет значений КЕО в точках характерного разреза помещения при верхнем освещении от зенитных и шахтных фонарей следует выполнять по формуле:

, (3)

где A ф.в - площадь входного верхнего отверстия фонаря; N ф - число фонарей; q (αε ) - коэффициент, учитывающий неравномерную яркость облачного неба МКО; - угол между прямой, соединяющей расчетную точку с центром нижнего отверстия фонаря, и нормалью к этому отверстию; - среднее значение геометрического КЕО; K с - коэффициент светопередачи фонаря, определяемый для фонарей с диффузным отражением стенок, а для фонарей с направленным отражением стенок -по значению индекса светового проема шахтного фонаря i ф ;

Рисунок 13 - График для определения коэффициента q () в зависимости от угла

Рисунок 14 K с фонарей с диффузным отражением стенок шахты

Рисунок 15 - График для определения коэффициента светопередачи K c фонарей с направленным отражением стенок шахты при различных значениях коэффициента диффузного отражения стенок шахты

K з - расчетный коэффициент, учитывающий снижение КЕО и освещенности в процессе эксплуатации вследствие загрязнения и старения светопрозрачных заполнений в световых проемах, а также снижение отражающих свойств поверхностей помещения (коэффициент запаса).

Индекс светового проема фонаря с отверстиями в форме прямоугольника i ф определяют по формуле

, (4)

где A ф.н - площадь нижнего отверстия фонаря, м 2 ; A ф.в - площадь верхнего отверстия фонаря, м 2 ; h с.ф - высота светопроводной шахты фонаря, м. Р ф.в , Р ф.н — периметр верхнего и нижнего отверстий фонаря соответственно, м.

То же, с отверстиями в форме круга - по формуле

i ф = (r ф.в + r ф.н ) / 2 h с.ф , (5)

где r ф.в , r ф.н - радиус верхнего и нижнего отверстий фонаря соответственно.

Вычисляют значение геометрического КЕО в первой точке характерного разреза помещения по формуле

. (6)

Повторяют вычисления для всех точек характерного разреза помещения до N j включительно (где N j - число точек, в которых производят расчет КЕО).

Определяют по формуле

. (7)

Последовательно для всех точек вычисляют прямую составляющую КЕО σσ по формуле

. (8)

Определяют отраженную составляющую КЕО
, значение которой одинаково для всех точек, по формуле

. (9)

Расчет естественного освещения рабочего кабинета

Теоретическая часть

Освещение рабочих кабинетов, офисов должно проектироваться на основе следующих требований:

а) создание необходимых условий освещения на рабочих столах, расположенных в глубине помещения при выполнении разнообразных зрительных работ (чтение типографского и машинописного текстов, рукописных материалов, различение деталей графических материалов и т. п.);

б) обеспечение зрительной связи с наружным пространством;

в) защита помещений от слепящего и теплового действия инсоляции;

г) благоприятное распределение яркости в поле зрения.

Боковое освещение рабочих кабинетов должно осуществляться, как правило, отдельными световыми проемами (одно окно на каждый кабинет). С целью снижения необходимой площади световых проемов высоту подоконника над уровнем пола рекомендуется принимать не менее 0,9 м.

При расположении здания в административных районах Российской Федерации групп по ресурсам светового климата нормированное значение КЕО следует принимать: при глубине рабочих кабинетов (офисов) 5 м и более - по таблице 3 применительно к совмещенной системе освещения; менее 5 м - по таблице 4 применительно к естественной системе освещения.

Для обеспечения зрительного контакта с наружным пространством заполнение световых проемов должно, как правило, выполняться светопрозрачным оконным стеклом.

Для ограничения слепящего действия солнечной радиации в рабочих кабинетах и офисах необходимо предусматривать шторы и легкие регулируемые жалюзи. При проектировании зданий управления и зданий под офисы для III и IV климатических районов Российской Федерации следует предусматривать оборудование световых проемов, ориентированных на сектор горизонта в пределах 200°-290° солнцезащитными устройствами.

В помещениях значения коэффициента отражения поверхностей должны быть не менее:

  • потолка и верхней части стен 0,70
  • нижней части стен 0,50
  • пола 0,30.

Практическая часть

Требуется определить необходимую площадь окна в рабочих кабинетах здания управления, располагаемого в городе Сургуте.

Исходные данные. Глубина помещения d п = 5,5 м, высота h = 3,0 м, ширина b п = 3,0 м, площадь пола А п = 16,5 м 2 , высота верхней грани светового проема над условной рабочей поверхностью h 01 = 1,9 Заполнение световых проемов прозрачным остекленением по металлическим одинарным переплетам; толщина наружных стен 0,35 м. Затенение противостоящими зданиями отсутствует.

Решение

1. Учитывая, что глубина помещения d п свыше 5 м, по таблице 3 находим, что нормированное значение КЕО равно 0,5 %.

2. Производим предварительный расчет естественного освещения по исходной глубине помещения d п = 5,5 м и высоте верхней грани светового проема над условной рабочей поверхностью h 01 = 1,9 м; определяют, что d п / h 01 = 5,5/1,9=2,9.

3. На рисунке 4 на соответствующей кривой е = 0,5 % находим точку с абсциссой d п / h 01 = 2,9. По ординате этой точки определяем, что необходимая относительная площадь светового проема A о / A п = 16,6%.

4. Определяем площадь светового проема А о по формуле:

0,166 А п = 0,166 · 16,5 = 2,7 м 2 .

Следовательно, ширина светового проема b o = 2,7/1,8 = 1,5 м.

Принимаем оконный блок размером 1,5 х 1,8 м.

5. Производим проверочный расчет КЕО в точке А по формуле:

.

6. Накладываем график I для расчета КЕО методом А.М. Данилюка на поперечный разрез помещения, совмещая полюс графика I - 0 с точкой А , а нижнюю линию - с условной рабочей поверхностью; подсчитываем число лучей по графику I , проходящих через поперечный разрез светового проема: n 1 = 2.

7. Отмечаем, что через точку С на разрезе помещения проходит концентрическая полуокружность 26 графика I .

8. Накладываем график II для расчета КЕО на план помещения таким образом, чтобы его вертикальная ось и горизонталь 26 проходили через точку С ; подсчитываем по графику II число лучей, проходящих от неба через световой проем: п 2 = 16.

9. Определяем значение геометрического КЕО по формуле:

10. На поперечном разрезе помещения в масштабе 1:50 определяем, что середина участка неба, видимого из расчетной точки А через световой проем, находится под углом
; по значению этого угла по таблице 5 находим коэффициент, учитывающий неравномерную яркость облачного неба МКО: q i =0,64.

11. По размерам помещения и светового проема находят, что d п / h 01 = 2,9;

l Т / d п = 0,82; b п / d п = 0,55.(таблица 6)

12. Средневзвешенный коэффициент отражения

13. По найденным значениям d п / h 01 ; l T / d п ; b п / d п по таблице 6 находим, что r o = 4,25.

14. Для прозрачного остекленения с металлическим одинарным переплетом находим общий коэффициент пропускания света . Таблица 7

15 По СНиП 23-05 находим, что коэффициент запаса для окон общественных зданий K з = 1,2.

16 Определяем геометрический КЕО в точке А, подставляя значения всех найденных коэффициентов в формулу:

.

Следовательно, выбранные размеры светового проема обеспечивают требования норм по совмещенному освещению рабочего кабинета.

Определение естественного освещения при наличии противостоящего здания.

Противостоящее здание

Определим геометрический КЕО:

- между линией рабочей поверхности и линией, соединяющей расчетную точку с оптическим центром светопроема;

- коэффициент, учитывающий неравномерную яркость облачного неба;

- коэффициент, учитывающий относительную яркость противостоящего здания.

- коэффициент, учитывающий свет, отраженный от противостоящего здания, определяемый по выражению.

Таблица 1

Группы административных районов

Номер группы административных районов

Административный район

Московская, Смоленская, Владимирская,
Калужская, Тульская, Рязанская, Нижегородская, Свердловская, Пермская,
Челябинская, Курганская, Новосибирская, Кемеровская области, Республика
Мордовия, Чувашская Республика, Удмуртская Республика, Республика
Башкортостан, Республика Татарстан, Красноярский край (севернее 63°
с.ш.). Республика Саха (Якутия) (севернее 63° с.ш.), Чукотский автон.
округ, Хабаровский край (севернее 55° с.ш.)

Брянская, Курская, Орловская, Белгородская,
Воронежская, Липецкая, Тамбовская, Пензенская, Самарская, Ульяновская,
Оренбургская, Саратовская, Волгоградская области, Республика Коми,
Кабардино-Балкарская Республика, Республика Северная Осетия-Алания,
Чеченская Республика, Республика Ингушетия, Ханты-Мансийский автономный
округ, Республика Алтай, Красноярский край (южнее 63° с.ш.), Республика
Саха (Якутия) (южнее 63° с.ш.), Республика Тыва, Республика Бурятия,
Читинская область, Хабаровский край (южнее 55° с.ш.), Магаданская,
Сахалинская области

Калининградская, Псковская, Новгородская,
Тверская, Ярославская, Ивановская, Ленинградская, Вологодская,
Костромская, Кировская области, Республика Карелия, Ямало-Ненецкий
автономный округ, Ненецкий автономный округ

Архангельская, Мурманская области

Республика Калмыкия, Ростовская, Астраханская
области, Ставропольский край, Краснодарский край, Республика Дагестан,
Амурская область, Приморский край

Таблица 2

Коэффициент светового климата

Световые проемы


горизонта

Коэффициент светового климата m N

Номер группы административных районов

В наружных стенах здании

В зенитных фонарях

Примечание - С - северная; СВ -
северо-восточная; СЗ - северо-западная; В - восточная; З - западная; Ю
- южная; ЮВ - юго-восточная; ЮЗ - юго-западная ориентация.

Таблица 3

Нормированные значения КЕО при боковом совмещенном
освещении в основных помещениях жилых и общественных зданий в
административных районах различных групп по ресурсам светового климата

Группы административных районов по ресурсам
светового климата

Ориентация световых проемов по сторонам
горизонта, град.

в школьных классах

в выставочных залах

в читальных залах

в проектных залах

Таблица 4

Нормированные значения КЕО при боковом естественном
освещении в основных помещениях жилых и общественных зданий в различных
группах административных районов по ресурсам светового климата

Группы админист-

ративных районов по ресурсам светового климата

Ориентация световых проемов по сторонам
горизонта, град.

Нормированные значения КЕО, %

в рабочих кабинетах зданий управления, офисах

в школьных классах

в жилых помещениях

вочных залах

в читальных залах

в проектных залах, чертежно-

конструк-

торских бюро

Таблица 5

Значения коэффициентq i

Угловая высота среднего луча участка небосвода,
видимого из расчетной точки через световой проем в разрезе помещения,
град.

Значения коэффициента q i

Примечания

1 При значениях угловых высот среднего луча,
отличных от приведенных в таблице, значения коэффициента q i
определяют интерполяцией.

2 В практических расчетах угловую высоту
среднего луча участка небосвода, видимого из расчетной точки через
световой проем в разрезе помещения, следует заменять угловой высотой
середины участка небосвода, видимого из расчетной точки через световой
проем.

Таблица 6

Солнцезащитные устройства, изделия и материалы

Коэффициент, учитывающий потери света в
солнцезащитных устройствах,

Стальные фермы

Убирающиеся регулируемые жалюзи и шторы
(межстекольные, внутренние, наружные)

Железобетонные и деревянные фермы и арки

Стационарные жалюзи и экраны с защитным углом
не более 45° при расположении пластин жалюзи или экранов под углом 90°
к плоскости окна:

горизонтальные

вертикальные

Балки и рамы сплошные при высоте сечения:

Горизонтальные козырьки:

с защитным углом не более 30°

50 см и более

с защитным углом от 15° до 45°

менее 50 см

(многоступенчатые)

Балконы глубиной:

Лоджии глубиной:

Таблица 9

Коэффициент запасаК з

Помещения и территории

Примеры помещений

Искусственное освещение

Естественное освещение

Коэффициент запаса К з

Количество светильников в год

Коэффициент запаса К з

Количество чисток остекления светопроемов в год

Эксплуатационная группа светильников по
приложению Г

Угол наклона светопропускающего материала к
горизонту, градусы

1. Производственные помещения с воздушной
средой, содержащей в рабочей зоне:

а) св. 5 мг/м 3 пыли, дыма, копоти

Агломерационные фабрики, цементные заводы и
обрубные отделения литейных цехов

б) от 1 до 5 мг/м 3 пыли, дыма, копоти

Цехи кузнечные, литейные, мартеновские,
сборного железобетона

в) менее 1 мг/м 3 пыли, дыма, копоти

Цехи инструментальные, сборочные, механические,
механосборочные, пошивочные

г) значительные концентрации паров, кислот,
щелочей, газов, способных при соприкосновении с влагой образовывать
слабые растворы кислот, щелочей, а также обладающих большой
коррозирующей способностью

Цехи химических заводов по выработке кислот,
щелочей, едких химических реактивов, ядохимикатов, удобрений, цехи
гальванических покрытий и различных отраслей промышленности с
применением электролиза

2. Производственные помещения с особым режимом
по чистоте воздуха при обслуживании светильников:

а) с технического этажа

б) снизу из помещения

3. Помещения общественных и жилых зданий:

а) пыльные, жаркие и сырые

Горячие цехи предприятий общественного питания,
охлаждаемые камеры, помещения для приготовления растворов в прачечных,
душевые и т.д.

б) с нормальными условиями среды

Кабинеты и рабочие помещения, жилые комнаты,
учебные помещения, лаборатории, читальные залы, залы совещаний,
торговые залы и т.д.

4. Территории с воздушной средой, содержащей:

а) большое количество пыли (более 1 мг/м 3)

Территории металлургических, химических,
горнодобывающих предприятий, шахт, рудников, железнодорожных станций и
прилегающих к ним улиц и дорог

б) малое количество пыли (менее 1 мг/м 3)

Территории промышленных предприятий, кроме
указанных в подл. “а” и общественных зданий

5. Населенные пункты

Улицы, площади, дороги, территории жилых
районов, парки, бульвары, пешеходные тоннели, фасады зданий, памятники,
транспортные тоннели

Примечания

1 Значения коэффициента запаса, указанные в гр.6 - 9, следует умножать на 1 ,1 - при применении узорчатого стекла, стеклопластика, армопленки и матированного стекла,а также при использовании световых проемов дляаэрации; на 0 ,9 - при применении органического стекла.

2 Значения коэффициентов запаса, указанные в гр. 3 - 5 , приведены для разрядных источников света. При использовании ламп накаливания их следует умножать на 0 ,85 .

Первая и последняя расчетные точки принимаются на расстоянии 1 м от поверхности стен (перегородок) или осей колонн.

График I для подсчета количества лучей n 1

График II для подсчета количества лучей п 2


Оптимизация расположения громкоговорителей в комнате прямоугольной формы

Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

Определение площадок первых отражений


Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

"

Расчет
резонатора Гельмгольца

Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

w - ширина деревянной планки,

r - ширина зазора,

d - толщина деревянной планки,

D - глубина каркаса,

с - скорость звука в воздухе.

Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

"

Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

fo=600/sqrt(m*d) , где

m - поверхностная плотность мембраны, кг/кв.м

d - глубина каркаса, см

Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

fo=500/sqrt(m*d)

Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

"

Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
Соотношение выглядит следующим образом:

1.1w/h <= l/h <= 4.5w/h - 4,

l/h < 3, w/h < 3

где l - длина, w - ширина, и h - высота помещения.

Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

"

Расчет диффузора Шредера

Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

V - объем зала, м3
S - суммарная площадь всех ограждающих поверхностей зала, м2
α - средний коэффициент звукопоглощения в помещении
µ - коэффициент, учитывающий поглощение звука в воздухе

Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
EBU Tech. 3276 - Listening conditions for sound programme, 2004
IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998


Охлаждение внутренних помещений – это основная функция кондиционера, поэтому выбор кондиционера определяется в первую очередь мощностью охлаждения. В свою очередь, необходимая мощность кондиционера напрямую зависит от размеров помещения, которое требуется охлаждать.

С мощностью охлаждения не следует смешивать потребляемую мощность, поскольку это совершенно разные параметры. Мощность охлаждения в несколько раз превышает мощность, потребляемую кондиционером. Например, кондиционер, потребляющий 700 Вт, имеет мощность охлаждения 2 кВт, и это не должно удивлять, поскольку кондиционер работает, также как холодильник, хладоноситель (фреон) отбирает тепло у воздуха в помещении и передает его на улицу через теплообменник (внешний блок кондиционера). Соотношение мощностей называется энергоэффективностью кондиционера (EER). Для бытовых кондиционеров этот параметр будет иметь значения в диапазоне 2,5 – 4.

Ниже приведена таблица распределения мощностей кондиционеров. По ней можно подобрать типы кондиционеров, наиболее оптимальные в тех или иных условиях. Например, в небольших комнатах или офисах, где требуются маломощные кондиционеры, рациональней устанавливать мобильные, оконные или настенные модели. Кондиционеры других моделей имеют большую мощность и, соответственно, более высокие цены, поэтому их лучше приобретать для охлаждения крупных помещений (торговых залов, складов и т.п.)

Холодильная мощность, кВт 1.5 2 2.5 3.5 5.5 7 9 10 14 17
Стандартные типоразмеры модели 05 07 09 12 18 24 30 36 48 60
Мобильные кондиционеры (мобильные моноблоки и сплит-системы)
Оконные кондиционеры
Настенные кондиционеры
Кассетные кондиционеры
Канальные кондиционеры
Колонные кондиционеры
Напольно-потолочные кондиционеры
Если вы решили приобрести кондиционер, то первое, что вам необходимо сделать - это рассчитать его мощность. Чаще всего ориентируются на принятую стандартную формулу 1 кВт мощности рассчитан на 10 м2 площади помещения. Но данная формула не является точной, поскольку существует много других факторов, которые оказывают непосредственное влияние на расчет. Следует учитывать количество света, приникающего в помещение, наружную температуру воздуха, количество электрических приборов и пр. Рассмотрим основные положения, которые помогут произвести точный расчет мощности кондиционера.

Единицы измерения мощности

Довольно часто, кроме привычных для нас единиц измерений мощности, используют и другие. Например, британская тепловая единица, которая измеряется в БТЕ/ч. Она определяется количеством теплоты, которое необходимо нагреть для одного фунта воды на градус Фаренгейта.

С системой СИ она имеет следующее соотношение:

  • 1Вт=3,4 БТЕ/ч или
  • 1000 БТЕ/ч=293 Вт
Довольно часто модели называют «девятки» или «двенадцатки», поскольку маркируются они с упоминанием этих и других цифр, а измерение производительности производится в БТЕ/ч.

Как рассчитать мощность кондиционера

Мощность (точнее, мощность охлаждения) является основной характеристикой любого кондиционера. Ориентировочный расчет мощности охлаждения Q (в киловаттах) производится по общепринятой методике:

Q = Q1 + Q2 + Q3 , где Q1 — теплопритоки от окна, стен, пола и потолка.

Q1 = S * h * q / 1000 , где

S — площадь помещения (кв. м);

h — высота помещения (м);

q — коэффициент, равный 30 - 40 Вт/кб. м:

q = 30 для затененного помещения;

q = 35 при средней освещенности;

q = 40 для помещений, в которые попадает много солнечного света.

Если в помещение попадают прямые солнечные лучи, то на окнах должны быть светлые шторы или жалюзи.

Q2 — сумма теплопритоков от людей.

Теплопритоки от взрослого человека:

0,1 кВт — в спокойном состоянии;

0,13 кВт — при легком движении;

0,2 кВт — при физической нагрузке;

Q3 — сумма теплопритоков от бытовых приборов.

Теплопритоки от бытовых приборов:

0,3 кВт — от компьютера;

0,2 кВт — от телевизора;

Мощность выбранного кондиционера должна лежать в диапазоне от -5% до +15% расчетной мощности Q . Заметим, что расчет кондиционера по этой методике является не слишком точным и применим только для небольших помещений в капитальных зданиях: квартир, отдельных комнат коттеджей, офисных помещений площадью до 50 - 70 кв. м. Для административных, торговых и промышленных объектов используются другие методики, учитывающие большее количество параметров.

Пример расчета мощности кондиционера

Рассчитаем мощность кондиционера для жилой комнаты площадью 26 кв. м c высотой потолков 2,75 м в которой проживает один человек, а также есть компьютер, телевизор и небольшой холодильник с максимальной потребляемой мощностью 165 Вт. Комната расположена на солнечной стороне. Компьютер и телевизор одновременно не работают, так как ими пользуется один человек.

  • Сначала определим теплопритоки от окна, стен, пола и потолка. Коэффициент q выберем равным 40 , так как комната расположена на солнечной стороне:

    Q1 = S * h * q / 1000 = 26 кв. м * 2,75 м * 40 / 1000 = 2,86 кВт .

  • Теплопритоки от одного человека в спокойном состоянии составят 0,1 кВт .

    Q2 = 0,1 кВт

  • Далее, найдем теплопритоки от бытовой техники. Поскольку компьютер и телевизор одновременно не работают, то в расчетах необходимо учитывать только один из этих приборов, а именно тот, который выделяет больше тепла. Это компьютер, тепловыделения от которого составляют 0,3 кВт . Холодильник выделяет в виде тепла около 30% максимальной потребляемой мощности, то есть 0,165 кВт * 30% / 100% ≈ 0,05 кВт .

    Q3 = 0,3 кВт + 0,05 кВт = 0,35 кВт

  • Теперь мы можем определить расчетную мощность кондиционера:

    Q = Q1 + Q2 + Q3 = 2,86 кВт + 0,1 кВт + 0,35 кВт = 3,31 кВт

  • Рекомендуемый диапазон мощности Q range (от -5% до +15% расчетной мощности Q ):

    3,14 кВт < Q range < 3,80 кВт

Нам осталось выбрать модель подходящей мощности. Большинство производителей выпускает сплит-системы с мощностями, близкими к стандартному ряду: 2,0 кВт; 2,6 кВт; 3,5 кВт; 5,3 кВт; 7,0 кВт. Из этого ряда мы выбираем модель мощностью 3,5 кВт.

Интересно, что модели из этого ряда часто называют «7» (семерка), «9» (девятка), «12», «18» «24» и даже маркировка кондиционеров выполняется с использованием этих чисел, которые отражают мощность кондиционера не в привычных киловаттах, а в БТЕ/час . Связано это с тем, что первые кондиционеры появились в США, где до сих пор используется британская система единиц (дюймы, фунты). Для удобства покупателей мощность кондиционера выражалась в круглых цифрах: 7000 BTU/h, 9000 BTU/h и т.д. Эти же цифры использовались при маркировки кондиционера, чтобы по названию можно было легко определить его мощность. Однако некоторые производители, например Daikin, привязывают названия моделей к мощности, выраженной в ваттах, так кондиционер Daikin FTY35 имеет мощность 3,5 кВт.

Дополнительные параметры, которые необходимо учитывать при выборе кондиционера

Существует много факторов, которые оказывают существенное влияние при выборе кондиционера. Прежде всего, необходимо учитывать роль притока свежего воздуха при открытии окна. Упрощенная методика расчета мощности кондиционера не учитывает открытие окон для проветривания. Это связано с тем, что даже в инструкции по эксплуатации системы указано, что кондиционер должен работать только при закрытых окнах. В свою очередь это создает определенные неудобства, поскольку проветривать окна можно только при выключенном устройстве.

Решить данную проблему не сложно. Проветривать помещение с включенным кондиционером можно в любое время, но при этом следует не забывать закрывать входную дверь в помещение (чтобы не создавать сквозняков). Также необходимо данный нюанс учесть и при расчете мощности системы. С этой целью Q1 повышаем на 20% для компенсации тепловой нагрузки от приточного воздуха. Необходимо понимать, что с увеличением мощности повысятся и расходы на электроэнергию. По этой причине кондиционеры не рекомендуют использовать во время проветривания помещений. При максимально высокой температуре (летняя жара) кондиционер может и не поддержать заданную температуру, поскольку тепловые притоки могут оказаться слишком сильными.

Если охлаждаемое помещение расположено на верхнем этаже, где нет чердака, то тепло от нагреваемой крыши будет передаваться в помещение. Теплопритоки потолка будут гораздо выше, чем стен, поэтому увеличиваем мощность Q1 на 15%.

Значительную роль играет и большая площадь остекления окон. Проследить за этим довольно просто. Достаточно измерить температуру в солнечной комнате и сравнить ее с остальными. Во время обычного расчета предусмотрено наличие оного окна в комнате, площадью до 2 м2. Если площадь остекления превышает допустимое значение. То на каждый квадратный метр остекления добавляют в среднем 100-200 Вт.

Для работы в широком диапазоне тепловых нагрузок хорошо подходит инверторный кондиционер. Он имеет переменную мощность охлаждения, поэтому способен создать комфортные условия в данном помещении.

Соответствие модельных рядов и мощности кондиционера в BTU и кВт

Модельный ряд BTU кВт
7 7000 BTU 2.1 кВт
9 9000 BTU 2.6 кВт
12 12000 BTU 3.5 кВт
18 18000 BTU 5.3 кВт
24 24000 BTU 7.0 кВт
28 28000 BTU 8.2 кВт
36 36000 BTU 10.6 кВт
42 42000 BTU 12.3 кВт
48 48000 BTU 14.0 кВт
54 54000 BTU 15.8 кВт
56 56000 BTU 16.4 кВт
60 60000 BTU 17.6 кВт

Размеры комнаты под названием “золотой кубоид” рекомендованы AES (Audio Engineering Sosiety): 10" х 16" х 26" = H x B x L = 3,05м x 4,9м х 7,93м. Такие пропорции основаны на так называемых числах Фибоначчи, в частности на “золотом сечении”, когда отношение одного размера к другому имеет числовое значение, близкое к 0,618034: Для лаборатории SAS размеры H x B x L = 2,56м х 3,05м х 5,25м (указаны в скобках) гармонизированы по другим значениям чисел Фибоначчи:

Для примера приведена таблица иррациональных отношений, основанных на аддитивном ряде чисел Фибоначчи, посредством которых можно гармонизировать не только комнаты прослушивания, но и любые изделия и конструкции. В частности посредством таблицы этих чисел гармонизированы все элементы усилителя “Maestro Grosso”. Успешная реализация концепции дизайна в сложной пространственной композиции была бы невозможна без таблицы чисел Фибоначчи (табл. 6.1).

Таблица. 6.1. Числа Фибоначчи.

Вернемся к комнате прослушивания с пропорциями по AES. Джордж Кардас предложил способ определения положения АС и слушателя, основанный также на числах фибоначчи (размечено черным цветом на рис. 6.21). Для лаборатории SAS голубым цветом показано расположение АС и слушателя, если руководствоваться способом Кардаса. Красным цветом показано фактическое, оптимизированное по слуху расположение АС и слушателя. Если проанализировать табл. 6.2, где приведены расчеты fn по (6.1), то видно неслучайность выбора по слуху расположения АС и слушателя.

Таблица 6.2.

для "SAS"
по Cardas

для "SAS"
по слуху

примечания

АС - слушатель
АС - стена

слушатель -
задняя стена

Для того, чтобы не попадать в пучности звуковых волн в помещении, требуется выбирать такие значения относительныхрасстояний между АС, слушателем и АС. стенами и АС, слушателем и стеной, чтобы эти расстояния были близки к /З относительно главных мод (частот) звуковых волн, определяемых по (6.1) и представленных в табл. 6.2.

Расстояния от АС до боковых стен:


0,276 x B=0,276 x 3,05 = 0.84м;
2. Фактическое по слуху для SAS-Lab:
0.85м = Н/3= 2,56/3.

Расстояние между АС:

1. Расчет по Кардасу для SAS-LаЬ:
В - 2 x 0,276 x В = 3,05 - 2 x 0,276 x 3.05 = 1,37м;

1,35м; (1,35/Н = 0,527, ближайшее число Фибоначчи 0,528).

Расстояние от слушателя до АС:

1.Расчет по Кардасу для SAS-LаЬ:
L -2 x 0,618 x Н = -5,25 - 2 x 0,618 x 2,56 = 2,09м;
2. Фактическое по слуху для SAS-LаЬ:
2,1м (2,1/Н = 0,82; ближайшее число Фибоначчи 0,854).

Расстояние от слушателя до задний стены:

1. Расчет по Кардасу для SAS-LаЬ:
0.618 x Н = 0,618 x 2,56 = 1,58 м:
2. фактическое по слуху для SAS-LаЬ:
1,25м (1.25/Н = 0,488; ближайшее число Фибоначчи 0,472).

Позади слушателя сложено наибольшее количество стройматериалов, что значительно увеличивает звукопоглощение в этой части лаборатории, что, видимо, привело к смещению оптимальной зоны для слушателя.

Расстояние от АС до стены:

1 Расчет по Кардасу для SAS-LаЬ:
0,618 x H = 0,618 x 2.56 = 1,58м:
2. Фактическое по слуху для SAS-LаЬ:
1.9м (1.9/Н = 0,742; ближайшее число Фибоначчи 0,73).

Как видно, слуховой контроль дает оптимальное расположение АС и слушателя, когда знаешь, что и как контролировать. Числа Фибоначчи вполне адекватно показывают точность слухового аппарата для оптимизации зоны прослушивания в лаборатории SAS. Читатели, опираясь на изложенный материал, смогут проверить его применимость в своих комнатах прослушивания.